Suavização de dados do gráfico do Excel com alisamento dinâmico Suavização Os dados do gráfico do Excel com uma média móvel fixa funcionam quando você tem experiência com os dados e como é variável. Mas, se os dados mudam ou seu novo você ou a administração podem querer experimentar com um número diferente de períodos na média de suavização. Neste exemplo, uma fórmula OFFSET é usada para criar uma média em um intervalo dinâmico. Você digita o número de meses que você deseja usar para um período de suavização eo AVERAGE e OFFSET calcular quantas células para média. Antes de fazer o AVERAGE dinâmico, let8217s começar por entender como OFFSET funciona. Na figura a seguir, a célula G26 contém a fórmula para suavizar os dados na linha 20, OFFSET especifica que o intervalo AVERAGE irá suavizar os dados. Esta fórmula é uma etapa intermediária para ajudá-lo a entender como funciona a fórmula dinâmica. A função OFFSET retorna um intervalo que AVERAGE irá agir. OFFSETs atributos são, Neste exemplo, o intervalo que OFFSET calcula começa no G20 e tem zero linha ou coluna deslocamento. Em outras palavras, o canto superior esquerdo do intervalo OFFSET calcula é apenas G20. Ele não será deslocado ou deslocado por quaisquer linhas ou colunas. O intervalo calculado será 1 linha de altura e incluir a célula atual G26 e dois mais à esquerda (thats a -3). Assim, este intervalo calculado será G20: E20. Copie essa fórmula em G26 para a direita e você verá que a média da célula de dados acima dela na linha 20 e as duas células anteriores à esquerda. Então, heres o truque que vai fazer isso uma dinâmica e média em um intervalo que você escolher. E se você substituir uma referência de célula para que -3 na fórmula Na figura abaixo a fórmula na célula G26 foi modificada para que a largura é especificada pelo número na célula E24, E24 é a célula verde sombreada. O número que você digita na célula E24 determinará a largura das células usadas para a média. A introdução de um valor no E24 altera o intervalo utilizado para suavizar os dados. Neste ponto, você poderia usar um spinner ou menu drop-down para dar ao seu usuário uma escolha de quão grande para fazer a média de suavização. O resultado de sua seleção deve ir na célula E24. Theres um problema com este arranjo. Se o usuário insere um número maior em E24 do que há células à esquerda, OFFSET incluirá células em branco eo rótulo. Isso dará uma média incorreta. Se E24 é tão grande que OFFSET apaga a folha, então AVERAGE produz um erro. O que fazer Precisamos de uma solução que não pare apenas um erro, como ISERROR, precisamos de um que impede respostas incorretas. Nesta próxima figura a fórmula é a célula G26 foi ajustada. A linha 25 tem uma série de números que são os limites para intervalos válidos para a esquerda. A nova fórmula na célula G26 olha para a linha 25 e se o número na célula E24 é maior que o limite na linha 25, então NA () é produzido. Essa nova fórmula de correção de erros no G26 é: Quando um gráfico do Excel faz referência a NA () em uma célula, ele não traça nada. Isso impede que a linha de suavização caia para zero. Modifique a fórmula de suavização dinâmica para evitar erros. Problemas com suavização de dados e como contorná-los Agora você pode deixar seu usuário tentar qualquer período de suavização que eles querem. No entanto, (parece que há sempre um no entanto ou um, mas, neste caso) theres um problema com suavização de dados. Suavização tira a volatilidade, mas também significa que você não vai ver mudanças na direção, pontos de inflexão ou novas tendências até cerca de metade do período de suavização. Você está atrás da curva. O melhor dos dois mundos é usar uma função de suavização média ponderada. Dessa forma, você pode dar mais peso aos dados de curto prazo para que você veja as tendências, mas você pode alisar com base em dados mais antigos para eliminar parte da volatilidade. Soa como um bom caso para outro artigo, alisando dados do gráfico do Excel usando uma média ponderada. Baixe o arquivo de exemplo para alisar dados de gráfico do Excel com alisamento dinâmico ou dinâmico Ajude um amigo a compartilhar isso: Suavização de dados remove variação aleatória e mostra tendências e componentes cíclicos Inerente na coleta de dados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma forma de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados da MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A pergunta surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. Os modelos de alavancagem média e exponencial Como um primeiro passo para ir além dos modelos de média, modelos randômicos e modelos de tendências lineares, padrões e tendências não sazonais Pode ser extrapolada usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é estacionária localmente com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, usá-lo como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio eo modelo randômico-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é chamada frequentemente uma versão quotsmoothedquot da série original porque a média de curto prazo tem o efeito de alisar para fora os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série de tempo Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar aquém do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: é a quantidade de tempo que as previsões tenderão a ficar atrás de pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais baixos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar encaixá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo escolhe grande parte do quotnoisequot na Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se preferirmos tentar uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: a média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é 3 ((51) 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões a partir do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e então construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obteremos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de viragem por cerca de 10 períodos. A quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações de forma igual e ignora completamente todas as observações anteriores. (Voltar ao início da página.) Browns Simple Exponential Smoothing (média ponderada exponencialmente ponderada) Intuitivamente, os dados passados devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso do que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em um Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1 945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser facilmente otimizado Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3.4 períodos, que é semelhante ao de uma média móvel simples de 6-termo. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA e no modelo randômico sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoável, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto quotmore previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Assim a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Voltar ao início da página.) Browns Linear (ie duplo) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos), e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais do que um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo linear de suavização exponencial (LES) que calcula as estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos do tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida aplicando-se a suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dado por: Isto resulta em e 1 0 (isto é, enganar um pouco, e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula as estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não podem variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de suavização de tendência 946 é análoga à da constante de suavização de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é utilizada na estimativa do nível local da série, a idade média dos dados que são utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a . Neste caso, isto é 10.006 125. Isto não é um número muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100, portanto Este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis para um modelo que é suposto ser estimar uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de alisamento constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo a média da tendência ao longo dos últimos 20 períodos. Here8217s o que o lote de previsão parece se definimos 946 0,1, mantendo 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Suavização exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Suavização exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se queremos ser agnósticos quanto à existência de uma tendência local, então um dos modelos do SES pode ser mais fácil de explicar e também dar mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar de sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos à frente que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 fica maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao início da página.) 5.2 Smoothing Time Series Smoothing é normalmente feito para nos ajudar a ver melhor padrões, tendências, por exemplo, em séries temporais. Geralmente suavizar a irregularidade irregular para ver um sinal mais claro. Para os dados sazonais, podemos suavizar a sazonalidade para que possamos identificar a tendência. Suavização não nos fornece um modelo, mas pode ser um bom primeiro passo para descrever vários componentes da série. O termo filtro às vezes é usado para descrever um procedimento de suavização. Por exemplo, se o valor suavizado para um determinado tempo é calculado como uma combinação linear de observações para tempos circundantes, pode-se dizer que weve aplicado um filtro linear para os dados (não o mesmo que dizer o resultado é uma linha reta, por o caminho). O uso tradicional do termo média móvel é que em cada ponto no tempo determinamos médias (possivelmente ponderadas) dos valores observados que circundam um determinado tempo. Por exemplo, no instante t. Uma média móvel centrada do comprimento 3 com pesos iguais seria a média dos valores às vezes t -1. T. E t1. Para tirar a sazonalidade de uma série, para que possamos ver melhor a tendência, usaríamos uma média móvel com um período sazonal span. Assim, na série suavizada, cada valor suavizado foi calculado em média em todas as estações. Isso pode ser feito olhando para uma média móvel unilateral em que você média todos os valores para os anos anteriores de dados ou uma média móvel centrada na qual você usa valores antes e depois da hora atual. Para dados trimestrais, por exemplo, poderíamos definir um valor suavizado para o tempo t como (x t x t-1 x t-2 x t-3) 4, a média deste tempo e os 3 trimestres anteriores. No código R, este será um filtro unilateral. Uma média móvel centrada cria um pouco de uma dificuldade quando temos um número par de períodos de tempo no período sazonal (como costumamos fazer). Para suavizar a sazonalidade nos dados trimestrais. A fim de identificar a tendência, a convenção usual é usar a média móvel alisada no tempo t é Para suavizar a sazonalidade em dados mensais. Para identificar a tendência, a convenção usual é usar a média móvel alisada no instante t. Isto é, aplicamos o peso 124 a valores às vezes t6 e t6 e peso 112 a todos os valores em todos os momentos entre t5 e t5. No comando R filtro, bem especificar um filtro de dois lados quando queremos usar valores que vêm antes e depois do tempo para o qual foram suavização. Observe que na página 71 de nosso livro, os autores aplicam pesos iguais em uma média móvel sazonal centrada. Thats ok também. Por exemplo, um trimestral mais suave pode ser alisado no momento t é fraco x frac x frac x frac x frac x Um mensal mais suave pode aplicar um peso de 113 a todos os valores de tempos t-6 a t6. O código que os autores usam na página 72 tira vantagem de um comando rep que repete um valor um certo número de vezes. Eles não usam o parâmetro filter dentro do comando filter. Exemplo 1 Produção Trimestral de Cerveja na Austrália Tanto na Lição 1 quanto na Lição 4, analisamos uma série de produção trimestral de cerveja na Austrália. O código R seguinte cria uma série suavizada que nos permite ver o padrão de tendência e traça esse padrão de tendência no mesmo gráfico da série de tempo. O segundo comando cria e armazena a série suavizada no objeto chamado trendpattern. Note que dentro do comando filter, o parâmetro named filter dá os coeficientes para o nosso alisamento e sides 2 faz com que um centrado suave seja calculado. Beerprod (beerprod. dat) trendpattern filtro (beerprod, filtro c (18, 14, 14, 14, 18), sides2) gráfico (beerprod, tipo b, principal tendência média móvel média) linhas (trendpattern) Pode subtrair o padrão de tendência dos valores dos dados para obter uma melhor visão da sazonalidade. O resultado segue: Outra possibilidade para a série de alisamento para ver a tendência é o filtro one-sided trendpattern2 (beerprod, filter c (14, 14, 14, 14), sides1) Com isso, o valor suavizado é a média do ano passado. Exemplo 2. Desemprego mensal nos Estados Unidos Na lição de casa da semana 4, você analisou uma série mensal de desemprego nos Estados Unidos para 1948-1978. Heres um alisamento feito para olhar para a tendência. (Trendunemploy, mainTrend no Desemprego dos Estados Unidos, 1948-1978, xlab Ano) Apenas a tendência alisada é plotada. (Trendunemployfilter) (trendunemployfilter) (desemprego, filtroc (124,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112,124), sides2) trendunemploy ts (trendunemploy, start c (1948,1) O segundo comando identifica as características de tempo do calendário da série. Isso faz com que a trama tenha um eixo mais significativo. A trama segue. Para séries não-sazonais, você arent obrigado a alisar sobre qualquer extensão particular. Para alisar você deve experimentar com médias móveis de diferentes vãos. Esses períodos de tempo podem ser relativamente curtos. O objetivo é derrubar as bordas ásperas para ver que tendência ou teste padrão pôde estar lá. Outros Métodos de Suavização (Seção 2.4) A Seção 2.4 descreve várias alternativas sofisticadas e úteis para a suavização média móvel. Os detalhes podem parecer esboçado, mas isso é bom porque não queremos ficar atolados em muitos detalhes para esses métodos. Dos métodos alternativos descritos na Seção 2.4, o lowess (regressão localmente ponderada) pode ser o mais amplamente utilizado. Exemplo 2 Continua O gráfico seguinte é uma linha de tendência suavizada para a série de Desemprego dos EUA, encontrada utilizando um lowess mais suave, no qual uma quantidade substancial (23) contribuiu para cada estimativa suavizada. Note que isso suavizou a série mais agressivamente do que a média móvel. Os comandos utilizados foram os desempregados (desemprego, início c (1948,1), freq12) lote (lowess (desempregado, f 23), suavização principal Lowess da tendência de desemprego dos EUA) Suavização Exponencial Única A equação básica de previsão para suavização exponencial única é frequentemente Dado como hat alfa xt (1-alfa) hat t texto Nós prognosticamos que o valor de x no tempo t1 seja uma combinação ponderada do valor observado no tempo t eo valor previsto no instante t. Embora o método seja chamado um método de suavização, seu usado principalmente para previsão de curto prazo. O valor de é chamado de constante de suavização. Por qualquer razão, 0.2 é uma escolha padrão popular de programas. Isso coloca um peso de 0,2 na observação mais recente e um peso de 1,2,8 na previsão mais recente. Com um valor relativamente pequeno de, o alisamento será relativamente mais extenso. Com um valor relativamente grande de, o alisamento é relativamente menos extenso à medida que mais peso será colocado no valor observado. Este é um método simples de previsão em uma etapa que, à primeira vista, parece não exigir um modelo para os dados. De fato, este método é equivalente ao uso de um modelo ARIMA (0,1,1) sem constante. O procedimento ideal é ajustar um modelo ARIMA (0,1,1) ao conjunto de dados observado e usar os resultados para determinar o valor de. Isso é ótimo no sentido de criar o melhor para os dados já observados. Embora o objetivo seja suavizar e um passo à frente previsões, a equivalência ao modelo ARIMA (0,1,1) traz um bom ponto. Não devemos cegamente aplicar alisamento exponencial porque o processo subjacente pode não ser bem modelado por um ARIMA (0,1,1). Considere um ARIMA (0,1,1) com média 0 para as primeiras diferenças, xt - x t-1: começa hat amp amp xt theta1 wt amp amp xt theta1 (xt - que t) amp amp (1 theta1) xt - theta1hat tendem. Se deixarmos (1 1) e assim - (1) 1, vemos a equivalência à equação (1) acima. Por que o Método é Chamado Suavização Exponencial Isso produz o seguinte: começo chapéu amplificador amp alfa xt (1-alfa) alfa x (1-alfa) chapéu amp amp alfa xt alfa (1-alfa) x (1-alfa) 2hat fim Continuar Desta forma substituindo sucessivamente o valor previsto no lado direito da equação. Isto leva a: hat alpha xt alfa (1-alfa) x alfa (1-alfa) 2 x dots alfa (1-alfa) jx pontos alfa (1-alfa) x1 texto A equação 2 mostra que o valor previsto é uma média ponderada De todos os valores passados da série, com pesos exponencialmente mudando como nos movemos para trás na série. Suavização Exponencial Óptima em R Basicamente, basta ajustar um ARIMA (0,1,1) aos dados e determinar o coeficiente. Podemos examinar o ajuste do bom, comparando os valores previstos com a série real. O alisamento exponencial tende a ser usado mais como uma ferramenta de previsão do que um verdadeiro mais suave, por isso estávamos olhando para ver se temos um bom ajuste. Exemplo 3. N 100 observações mensais do logaritmo de um índice de preços do petróleo nos Estados Unidos. A série de dados é: Um ajuste ARIMA (0,1,1) em R deu um coeficiente MA (1) 0,3877. Assim, (1 1) 1,3877 e 1- -0,3877. A equação exponencial de suavização de previsão é 1.3877xt - 0.3877hat t No tempo 100, o valor observado da série é x 100 0,86601. O valor previsto para a série nesse momento é Assim, a previsão para o tempo 101 é 1.3877x - 0.3877hat 1.3877 (0.86601) -0.3877 (0.856789) 0.8696 O seguinte é o quão bem o mais suave se encaixa a série. É um bom ajuste. Isso é um bom sinal para a previsão, o principal objectivo para este mais suave. Aqui estão os comandos usados para gerar a saída para este exemplo: oilindex scan (oildata. dat) gráfico (oilindex, tipo b, registro principal de índice de óleo série) expsmoothfit arima (oilindex, ordem c (0,1,1)) expsmoothfit Para ver o arima resultados preditos oilindex - expsmoothfitresiduals previu valores gráfico (oilindex, typeb, principal Exponencial Suavização de Log of Oil Index) linhas (preditos) 1.3877oilindex100-0.3877predicteds100 previsão de tempo 101 Double Exponential Smoothing Dupla exponencial alisamento pode ser usado quando theres Tendência (longo ou curto prazo), mas sem sazonalidade. Essencialmente, o método cria uma previsão combinando estimativas exponencialmente suavizadas da tendência (inclinação de uma linha reta) eo nível (basicamente, a intercepção de uma linha reta). Dois pesos diferentes, ou parâmetros de suavização, são usados para atualizar esses dois componentes a cada vez. O nível suavizado é mais ou menos equivalente a uma suavização exponencial simples dos valores de dados ea tendência alisada é mais ou menos equivalente a uma simples suavização exponencial das primeiras diferenças. O procedimento é equivalente à montagem de um modelo ARIMA (0,2,2), sem constante, pode ser realizado com um ajuste ARIMA (0,2,2). (1-B) 2 xt (1theta1B theta2B2) p. Navegação
Comments
Post a Comment